Enrollment No:

Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Mathematical Methods-II

Subject Code: 5SC04N	IBE1	Branch: M.Sc. (Mathematics)			
Semester: 4	Date: 26/04/2017	Time: 10:30 To 01:30	Marks: 70		

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Answer the Following questions: (07)If a functional $I[y(x)] = \int_0^1 y(x) dx$ is defined on the class C[0,1], then prove (02)a. that $I\left[\cos\left(\frac{\pi x}{2}\right)\right] = \frac{1}{\pi}$. Solve the Euler's equation of the functional $I[y(x)] = \int_{x_0}^{x_1} (x + y')y' dx$. b. (02)Show that y(x) = 1 is a solution of $\int_0^x y(t) y(x-t) dt = 2y + x - 2$. c. (02)The shortest distance between two fixed points in the Euclidean xy-plane is a d. (01)straight line. Determine whether the statement is True or False.

Q-2 Attempt all questions

a. Show that

$$\int_{a}^{x} \int_{a}^{x_{n}} \dots \int_{a}^{x_{2}} f(x_{1}) dx_{1} dx_{2} \dots dx_{n} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$$

(14)

(07)

b. Show that the curve which extremizes the functional $\int_0^{\frac{\pi}{4}} (y''^2 - y^2 + x^2) dx$ (07) under the conditions $y(0) = 0, y'(0) = 1, y\left(\frac{\pi}{4}\right) = y'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ is $y(x) = \sin x$.

OR

Page 1 of 3

Q-2	Q-2 Attempt all questions	iestions							(14)	
	C1	.11	1 .	1	c	1.	, ,	• ,	, • 1	

a. Show that the geodesics on a sphere of radius 'a' are its great circle. (07) **b.** Find the integral equation corresponding to boundary value problem (07) $y'' + \lambda y(x) = 0, y(0) = y(1) = 0.$

Q-3 Attempt all questions

- **a.** On what curve the functional $\int_0^{\pi/2} (y'^2 y^2 + 2xy) dx$ with y(0) = 0 and (05) $y\left(\frac{\pi}{2}\right) = 0$ be extremized?
- **b.** Find the extremal of the functional $\int_0^{\pi} (y'^2 y^2) dx$ under the conditions (05)
- $\int_0^{\pi} y \, dx = 1, \ y(0) = 0 \text{ and } y(\pi) = 1.$ c. Let a functional I[y(x)] defined on the class $C^1[0, 1]$ be given by (04) $I[y(x)] = \int_0^1 [1 + \{y'(x)\}^2]^{1/2} dx$. Then prove that $I[1] = 1, I[x] = \sqrt{2}$ and $I[x^2] = \frac{\sqrt{5}}{2} + \frac{1}{4}\sinh^{-1}2.$

OR

Q-3 Attempt all questions

(14)(05)

(14)

In usual notations prove that a.

$$(i) \frac{d}{dx} \left(F - y' \frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial x} = 0,$$

$$(ii) \frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y'} - y' \frac{\partial^2 F}{\partial y \partial y'} - y'' \frac{\partial^2 F}{\partial y'^2} = 0.$$

b. Find the extremals of the functional $\int_0^{\pi} (4y \cos x + y'^2 - y^2) dx$ that satisfy the (05)given boundary conditions $y(0) = y(\pi) = 0$.

Show that the functional $I_1[y(x)] = \int_a^b \{y'(x) + y(x)\} dx$ is linear in the class $C^1[a, b]$, but the functional $I_2[y(x)] = \int_a^b [p(x)\{y'(x)\}^2 + q(x)\{y'(x)\}^2] dx$ is (04)c. non-linear.

SECTION - II

Q-4	Answer the Following questions:	(07)
a.	Reduce the differential equation $(1 - x^2)y'' - 2xy' + n(n+1)y = 0$ in to	(02)
	Sturm-Liouville differential equation.	
b.	Write the Chebyshev and Laguerre differential equation.	(02)
c.	Obtain the solution of $y(x) = 1 + \lambda \int_0^1 x t \cdot y(t) dt$ in the form	(02)
	$y(x) = 1 + \frac{3\lambda x}{2(3-\lambda)} \ (\lambda \neq 3).$	
d.	Define: Degenerate kernel.	(01)

d. Define: Degenerate kernel.

Page 2 of 3

Attempt all questions (14)**O-5**

Find the eigenvalues and eigenfunctions of a.

$$xy']' + \left(\frac{\lambda}{x}\right)y = 0, y'(1) = y'(e^{2\pi}) = 0.$$

(07)

(14)

(14)

(14)

b. Discuss the eigenvalues and corresponding eigenfunctions of the integral (07) equation $y(x) = F(x) + \lambda \int_0^1 (1 - 3xt)y(t) dt$.

OR

Q-5 Attempt all questions

- Find the all eigenvalues and eigenfunctions of the Strum-Liouville problem (07)a. $[x^{3}y']' + \lambda xy = 0, y(1) = y(e) = 0.$
- Solve the integral equation $F(t) = 1 + \int_0^t F(u) \sin(t u) \, du$ and verify your (07) b. solution.

Q-6 Attempt all questions

- **a.** Convert the integral equation $y(x) = 6x 5 + \int_0^x (5 6x + 6t) y(t) dt$ in to (05)differential equation along with initial conditions.
- **b.** Solve the integral equation $\int_0^x \frac{y(t)}{\sqrt{x-t}} dt = 1 + 2x x^2$. (05)
- c. Find the eigenvalue and eigenfunction of the integral equation (04) $y(x) = \lambda \int_0^1 e^{x+t} y(t) dt.$

OR

Q-6 Attempt all Questions

- **a.** Solve the integral equation $y(x) = x + \lambda \int_0^1 (x t)y(t)dt$. (05)
- **b.** Solve the integral equation $F'(t) = t + \int_0^t F(t-u) \cos u \, du$, if F(0) = 4. **c.** Reduce the differential equation $4x^2y'' + 4xy + (64x^2 9)y = 0$ to Sturm-(05)
- (04)Liouville differential equation.

Page 3 of 3